

Innovative Treatments for Central Nervous System Disorders

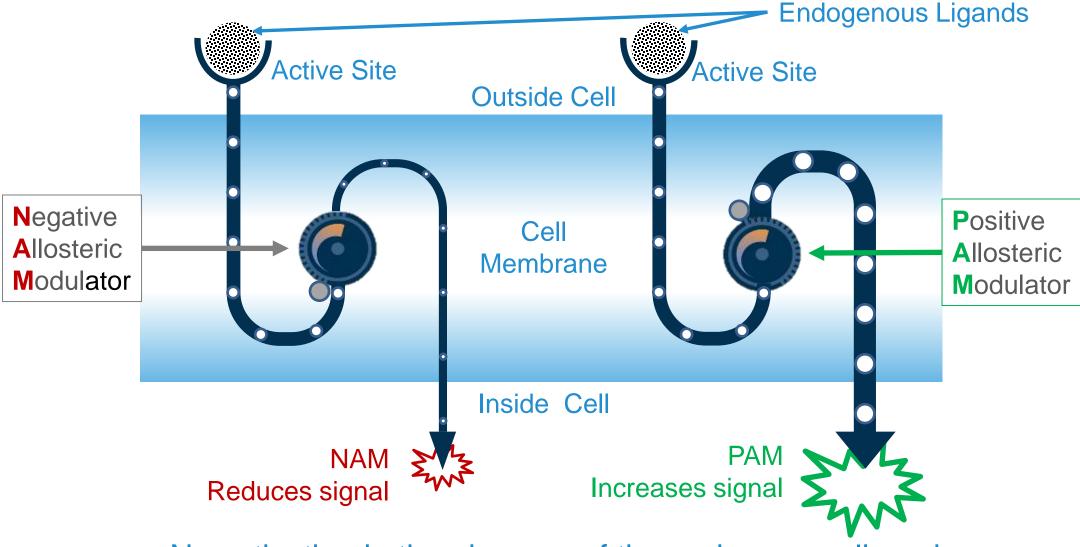
September 2023

Disclaimer

These materials do not constitute or form part, or all, of any offer or invitation to sell or issue, neither in the United States of America nor elsewhere, or any solicitation of any offer to purchase or subscribe for, any securities, nor shall part, or all, of these materials or their distribution form the basis of, or be relied on in connection with, any contract or investment decision in relation to any securities.

These materials contain forward-looking statements based on the currently held beliefs and assumptions of the management of Addex Therapeutics, which are expressed in good faith and, in their opinion, reasonable. Forward-looking statements involve known and unknown risks, uncertainties and other factors, which may cause the actual results, financial condition, performance, or achievements of Addex Therapeutics Ltd, or industry results, to differ materially from the results, financial condition, performance or achievements expressed or implied by such forward-looking statements.

Given these risks, uncertainties and other factors, recipients of this document are cautioned not to place undue reliance on these forward-looking statements. Addex Therapeutics Ltd disclaims any obligation to update these forward-looking statements to reflect future events or developments.



Addex Overview

Multiple high value programs reaching significant milestones	 Phase 2 epilepsy study (J&J) - data expected Q2 2024 GABAB PAM for cough (Addex) & SUD (Indivior) in CCS* M4 PAM for schizophrenia and other psychosis in CCS* Dipraglurant - post-stroke recovery phase 2 ready to start
Leading allosteric modulator technology platform	 Validated & differentiated pharmacological approach Proprietary biological screening assays and chemical library Track record of delivering novel drug candidates
In house discovered pipeline	 Significant intellectual property portfolio Multiple novel drug candidates in clinical candidate selection phase Driving long-term growth & future partnership opportunities
Technology validating partnerships	 J&J - €109M in milestones & double-digit royalties Indivior - \$330M in milestones, royalties up to double digit & funded research program
Top tier US investors	 Dual listed on SIX Swiss Exchange & US Nasdaq Capital Market CHF7.2M (\$8.0M) cash at June 30, 2023

What are Allosteric Modulators?

No activation in the absence of the endogenous ligand

Advantages of Allosteric Modulation Vs Orthosteric Drug Discovery

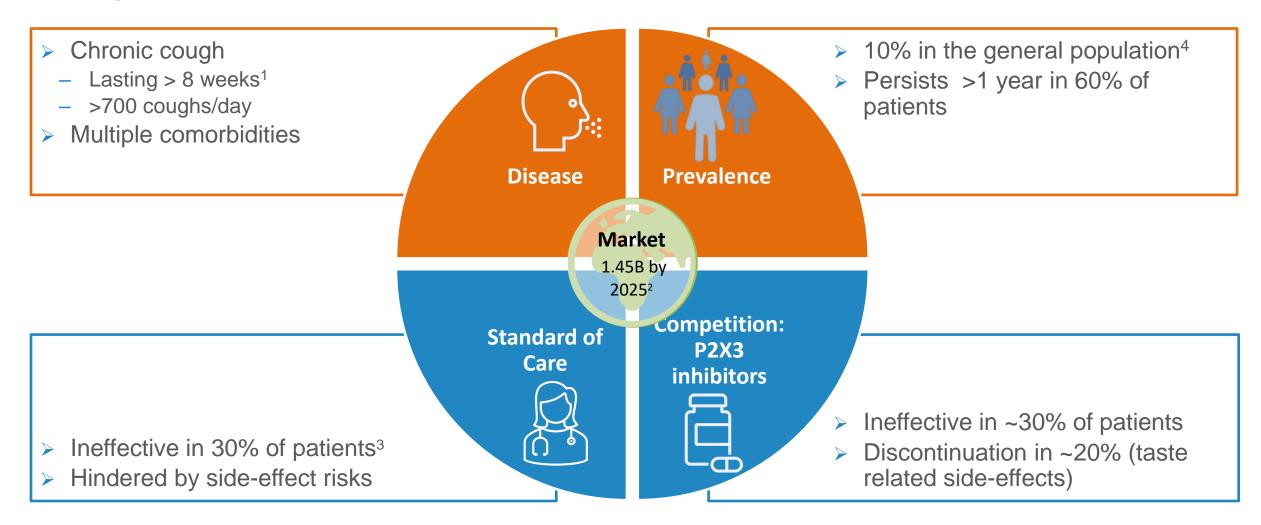
	Conventional small molecules	Biologics /peptides	Nucleic acid- based therapies	Gene therapies	Allosteric modulators
Selectivity	+	++	+++	+++	\checkmark
Differentiated pharmacology	-	-	+++	+++	✓
Better potential safety/tolerability	++	+	++	-	✓
Non-competitive mechanism	-	-	n/a	n/a	✓
Respect physio- logical rhythm	-	-	-	-	✓
Oral bioavailability	+++	+	-	-	✓
Crossing BBB	+++	-	-	-	✓
No immunogenicity	+++	-	+	+	✓
Low cost of goods	+++	-	-	-	✓

Allosteric modulators

- Address:
 - "Undruggable" targets, such as GPCRs, RTKs, cytokine receptors and enzymes
 - mAb and peptide drug targets with oral small molecules
- Offer exquisite selectivity and superior safety profile
- Are suitable for chronic treatment as potency maintained over prolonged periods
- Require a distinct HTS and characterization approach to discovering small molecule allosteric modulators
- Proven clinical approach (diazepam, cinacalcet, etc)

Advancing a Broad Allosteric Modulator Pipeline in Neuroscience

Molecule /	Dortner		Stage			Milestons
MoA	Partner	Discovery	IND studies	Phase 1	Phase 2	Milestone
In house Lead F	Programs	·				
GABA _B PAM		Chronic cough				IND enabling studies expected to start H1 2024
M4 PAM		Schizophrenia / other psychosis				IND enabling studies expected to start H2 2024
Partnered Progr	ams					
ADX71149 (mGlu2 PAM)	Janssen FRANKLEITELE CONTROLLE ST Gehmen Gehmen	Epilepsy				Data expected Q2 2024
GABA _B PAM	INDIVIOR	Substance use disorders				IND enabling studies expected 2024
Other Programs	Available for F	Partnering				
Dipraglurant (mGlu5 NAM)		Post-stroke recovery				Ready to start Phase 2a study
mGlu7 NAM		Stress-related disorders – PTSD				Ready to enter IND enabling studies
mGlu2 NAM		Mild neurocognitive disorders				Ready to restart lead optimization



GABAB PAM for Chronic Cough

Going beyond baclofen to treat cough with improved safety and tolerability

Cough - Unmet Medical Need and Commercial Opportunity

High unmet medical need for an efficacious and safe treatment of cough

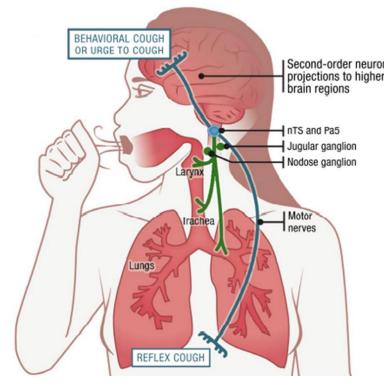
Standard of Care in Cough - Strengths and Weaknesses

GABAB

Use / side-effects	Dextro- metorphan	Opioids	Gabapentin & pregabalin Ar	nitriptyline	P2X3*	Agonist Baclofen	Addex PAM
Treatment type	Chronic	Acute	Acute	Acute	Chronic	Acute	Chronic
Risk of Abuse	Yes	Yes	Yes	Yes	No	No	No
Respiratory	No	Yes	Yes	Yes	No	Yes	No
Other CNS	Yes	Yes	Yes	Yes	No	Yes	No
Gastrointestinal	Yes	Yes	No	No	No	No	No
Taste-related	No	No	No	No	Yes**	No	No

- P2X3 inhibitor Gefapixant
 - * Ineffective in 30% of patients
 - ** Taste-related side effects observed in up to 97% of patients, leading to discontinuation in up to 20% of patients¹

A highly selective and targeted GABAB PAM has the potential to offer best-in-class efficacy and tolerability profile suitable for chronic treatment


GABAB Receptor - Validated Target in Cough

GABAB receptor

- Expressed throughout the cough neural circuit
- Activation reduces neuronal excitability
- Potential for broad application in cough patients
- > Baclofen, an orthosteric agonist
 - Used off-label in patients with chronic cough
 - Clinical studies with cough patients showed efficacy
 - Efficacious in healthy volunteer and multiple preclinical models

Selective GABAB PAM

- Differentiated pharmacology
- Improved efficacy and tolerability demonstrated in preclinical models
- Absence of receptor desensitization with chronic treatment

The anatomical mediators of cough (1)

GABAB PAM offers potential for improved treatment for cough patients

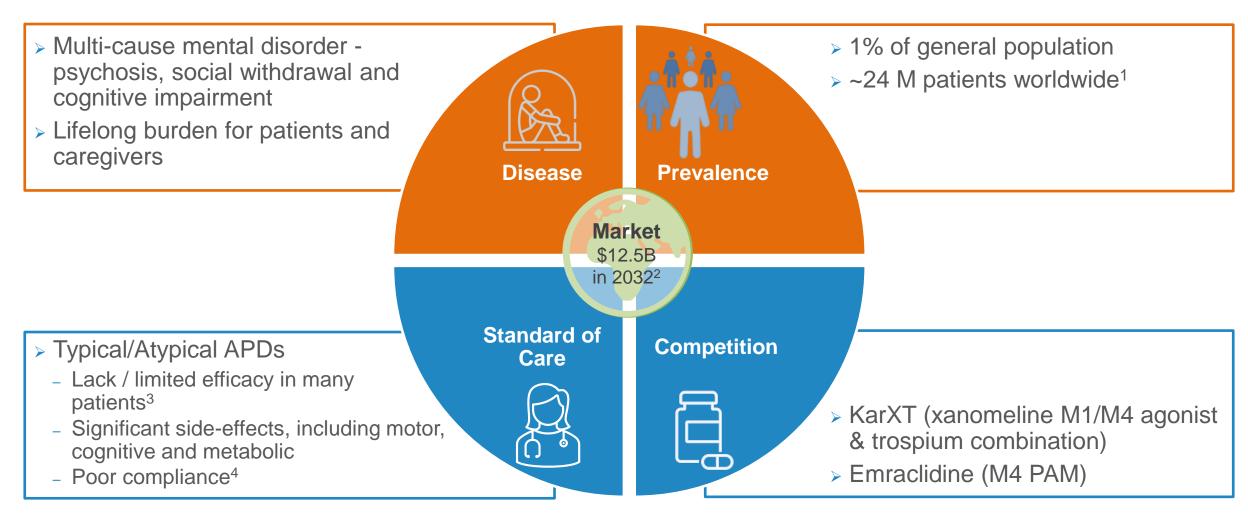
Target Product Profile and Plans for GABAB PAM in Cough

- A first-in-class GABAB PAM to treat Cough
 - Once-a-day oral dosing suitable for chronic treatment
 - Reduction in cough bouts and severity and improvement in quality of life
 - Superior tolerability with no taste related side-effects

Development Plan

H2 2023	2024	2025	2026	H1 2027
ccs	IND-enabling studies	Phase 1 &1b	Phase 2a (18 Month	ns)

On track for first-in-human studies in 2025

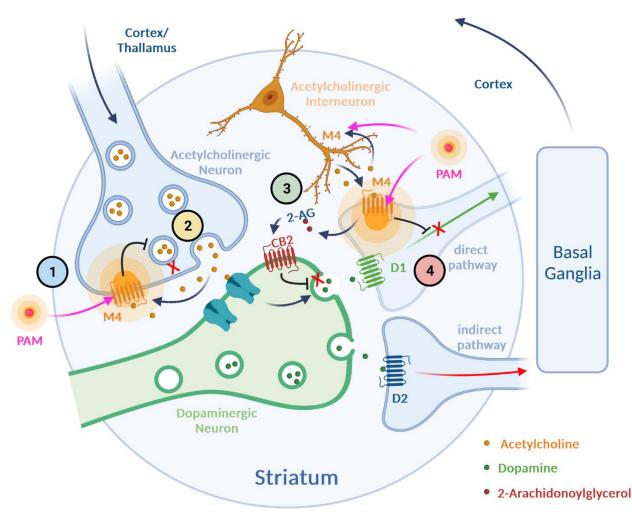


M4 PAM for Schizophrenia

Selectively targeting the M4 receptor to treat psychosis related symptoms with improved safety and tolerability compared to standard of care

Schizophrenia - Unmet Medical Need and Commercial Opportunity

High unmet need for better treatment options



³Lehman AF, Am J Psychiatry 2004

M4 PAM Mode of Action in Schizophrenia

1 M4 auto-receptor activation with a PAM or agonist prevents Ach release

2 Decreased Ach binding to nicotinic receptors reduces dopamine release

3 Activation of M4 receptor indirectly leads to activation of pre-synaptic CB2 receptor and further reducing dopamine signaling

4 Activation of M4 receptor also inhibits cAMP thus reducing dopaminergic tone

M4 PAM reduces striatal dopamine tone without direct antagonism of D1/D2 receptors

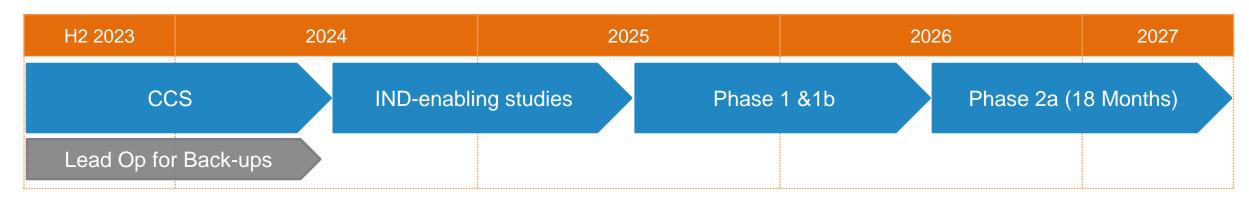
Selective M4 PAM - Differentiated Approach to Treat Schizophrenia

M4 PAM selectivity and high brain penetration offers potential improvements

	_	Muscarinic		
Effects / Side Effects	Standard of Care	Non- selective	Selective M4 PAM	
Discontinuation	High	High	Low	
Cognition	Impairment	Improved	Improved	
Metabolic & GI	Yes	Yes	No	
Cardiovascular	Yes	Yes	?	

Addex M4 PAM is highly potent, exquisitely selective with high brain penetration

- Limiting peripheral exposure
- Potentially offering best-in-class efficacy and tolerability


- Xanomeline (M1/M4 agonist) shows efficacy in schizophrenia and Alzheimer's patients
 - But with cholinergic and muscarinic GI side effects
- KarXT addresses these side effects by adding trospium, a peripheral muscarinic blocker
 - But still non-selective approach
- Xanomeline anti-psychotic effect driven by M4 receptor
 - M4 knock-out mice data
- Emraclidine (M4 PAM) is more selective
 - Ph1b in schizophrenia patients positive
 - But retains a small activity on M2 receptor

Target Product Profile and Development Plan

- A best-in-class M4 PAM to treat schizophrenia and other psychosis
 - Once a day oral dosing
 - Improved tolerability in comparison to non-selective muscarinic agonists

Development Plan

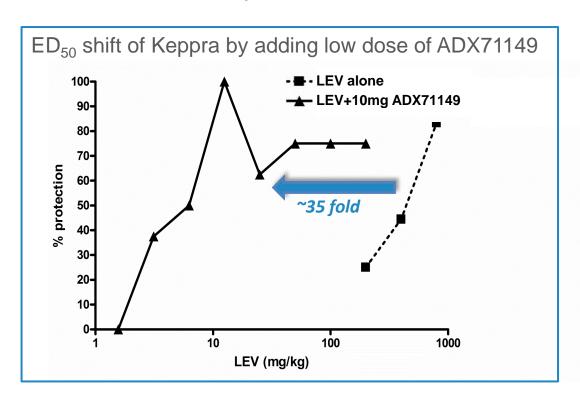
Addex M4 PAM on track to start first-in-human studies in H2 2025

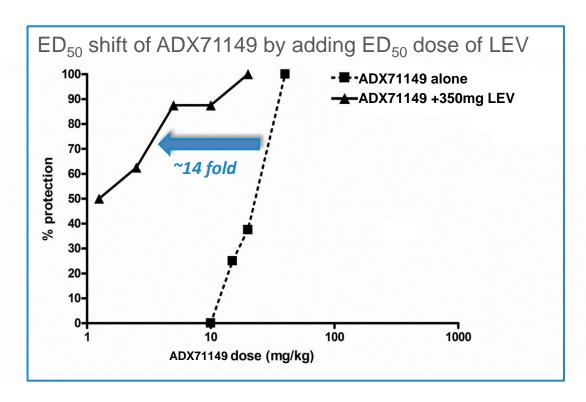
ADX71149 (JNJ-40411813) for Epilepsy

Partnered with Janssen Pharmaceuticals, Inc.

ADX71149 - Opportunity in Epilepsy

Large market & unmet medical need	Market projected to reach \$20 billion by 2026 ¹
	 Keppra & Briviact net sales in 2022 of €1.2 billion treating 2M patients²
	High proportion of refractory patients (¼ of new patients³) - combination treatments have limited therapeutic benefit
	Large underserved patient population needing improved treatment options
	Selective oral mGlu2 PAM demonstrated clear MoA in epilepsy
Strong MoA & synergistic	Showed 35-fold increase in Keppra (SV2A antagonist) efficacy
effect	Potential to reduce SV2A antagonist dosing – improve efficacy & reduce side effects
	Phase 2 study ongoing
Ctatus of day alama ant	 Cohort 1 completed
Status of development	Cohort 2 80% recruited
	Open label extension study ongoing
Strategic Partner Janssen Pharmaceuticals, Inc.	➤ Eligible to receive €109 million in pre-launch milestones and double-digit royalties

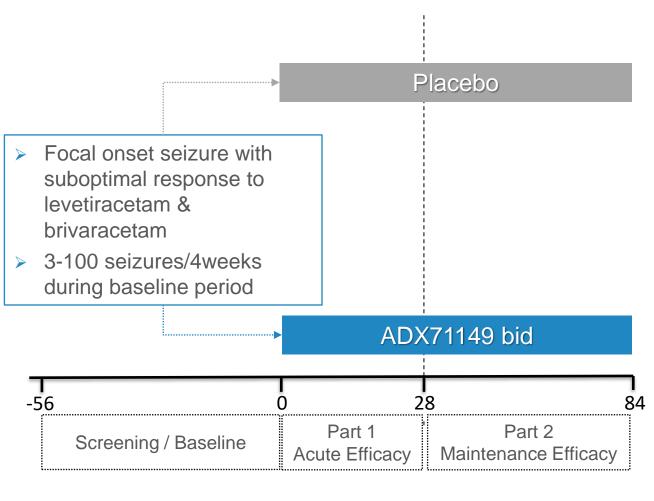

¹ Fortune Business Insights April 8, 2020


² UCB FY 2022

³ Xue-Ping et al, Medicine July 2019

ADX71149 Preclinical Efficacy in Epilepsy - 6Hz Model

Validation in pharmaco-resistant mouse epilepsy model with high translational value:



- Keppra efficacy increased 35-fold when administered with a low dose of ADX71149
- Low dose of Keppra leads to 14-fold increase in efficacy of ADX71149
- True synergistic effect specific only to SV2A antagonists

ADX71149 Phase 2a Epilepsy Study

- Double blind placebo controlled
- Establish 28-day seizure count (over 56-day baseline period)
- Primary endpoint: time to monthly baseline seizure count
- Period 1: 4-week acute efficacy phase
- Period 2: 8-week maintenance efficacy phase
- Subjects who do not reach or exceed their monthly baseline seizure count in Part 1 continue double-blind treatment during Part 2
- Evaluating up to 3 doses in up to 160 patients
- Cohort 1 (60 patients) completed Part 1 & 2
- Following review of unblinded data of Cohort 1 Part
 1 IRC* recommends to continue the study
- Cohort 2 (50 patients): 80% recruited including patients on brivaracetam

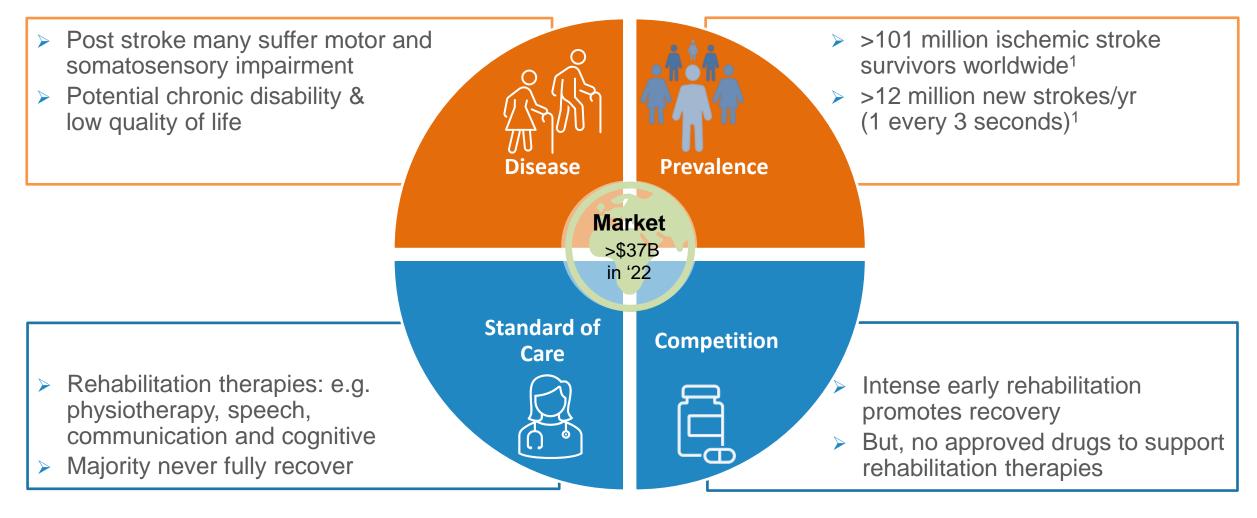
Data expected Q2 2024

GABAB PAM for Substance Use Disorders (Indivior Partnership)

Going beyond baclofen to treat substance use disorders with improved safety and tolerability

GABAB PAM for Substance Use Disorder

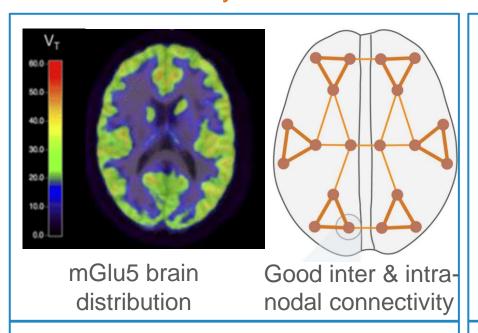
Lorgo populat Quippot	High prevalence;1.8% of US population ¹
Large market & unmet medical need	Current treatments have undesirable side-effects and prone to relapse
medical need	Burden to society in US is >\$600B annually²
	Baclofen (GABAB agonist) used off label for alcohol use disorder
Clinically validated MoA	ADX71441 attenuates alcohol self-administration and relapse to alcohol seeking in rats ³ and alcohol consumption in mice ⁴
	> ADX71441 reduces cocaine self-administration in non-human primates ⁵
	Addex is executing Indivior funded GABAB PAM research program
Status of program and	Multiple compounds in late clinical candidate selection phase
near-term milestone	Differentiated leads and backups with robust novel IP potential
	IND enabling studies expected to start in 2024
Strategic partnership	Eligible to receive \$330 million in milestones and tiered royalties from high single digits to low double digits
with Indivior	 Conducting a funded research program to discover novel GABAB PAMs Right to select compounds for development in reserved indications

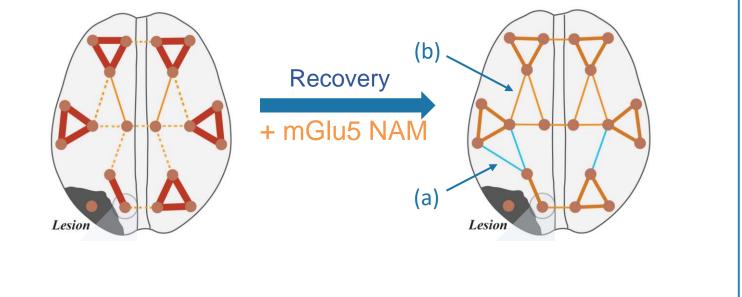


Dipraglurant (mGlu5 NAM) for Post-Stroke Recovery

Targeting neuroplasticity early in rehabilitation to promote recovery

Post Stroke Recovery - Unmet Medical Need & Commercial Opportunity


Urgent medical need to promote sensorimotor recovery in post-stroke patients



mGlu5: An Innovative Target for Post-Stroke Recovery

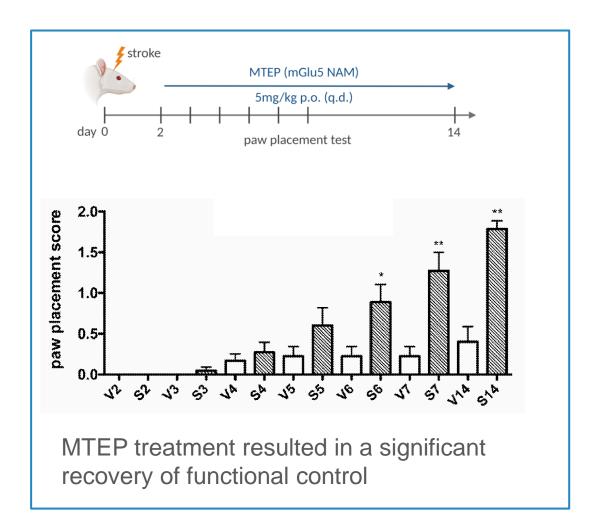
Healthy brain

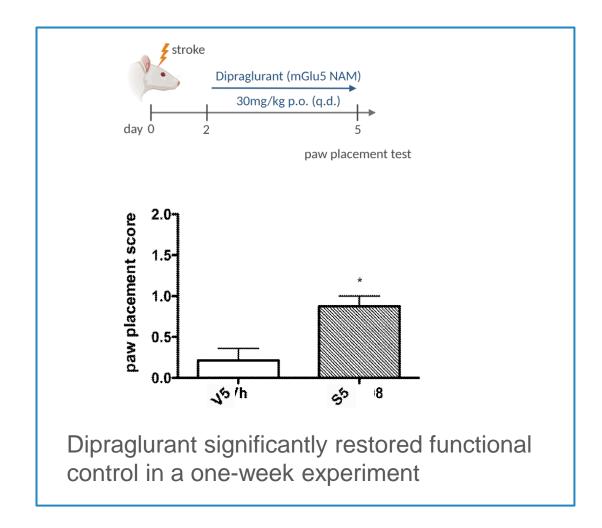
mGlu5 NAM supports post-stroke recovery

mGlu5

- Densely expressed in the brain
- Involved in neural plasticity
- Modulates excitation/inhibition equilibrium

Lesion effects:


- Confined neural tissue necrosis
- Network disruption & module segregation
- Imbalance in excitation/inhibition


mGlu5 NAM promotes synaptic plasticity

- Cortical reorganization & new functional pathways (a)
- Connectivity changes toward prelesion state (b)
- Restoration of excitation/inhibition equilibrium

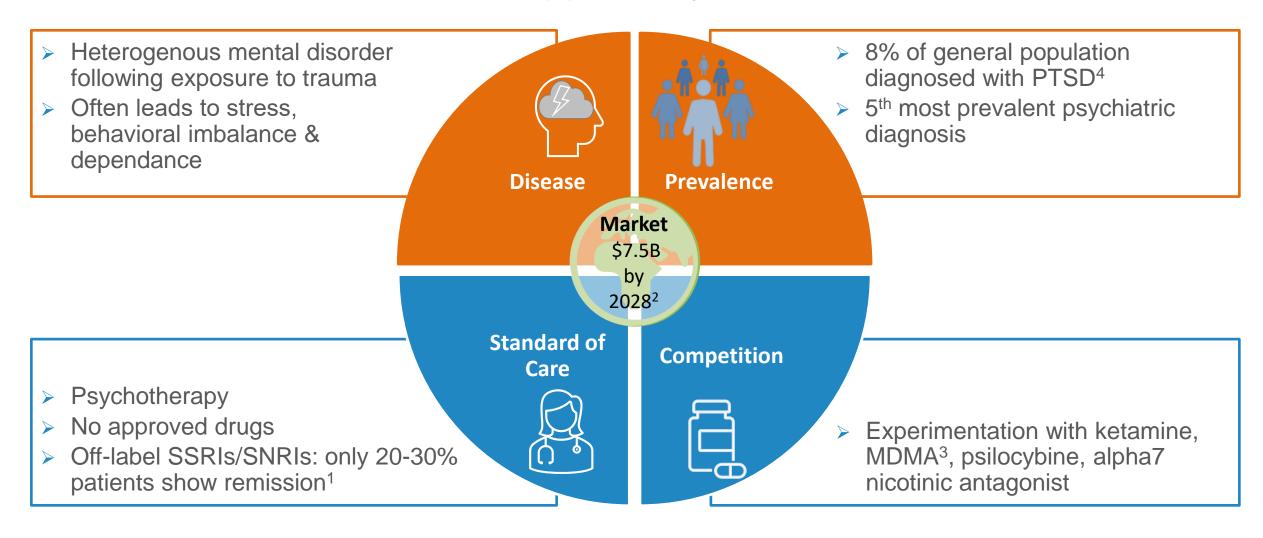
Preclinical Data: mGlu5 Inhibition Promotes Post-Stroke Recovery

Dipraglurant enhanced functional brain recovery in a rat model of experimental stroke

Dipraglurant Development Status

- Fast onset of action and short half-life
 - Ideally suited for concurrent dosing with rehabilitation
- Extensively profiled Phase 1 studies
 - 5 studies with >100 patients
 - Including receptor occupancy (PET ligand study)
- Phase 2 studies conducted
 - Safe and well tolerated in patients suffering from neurological disease Parkinson's disease
 - Mild to moderate CNS type AEs at doses < 200mg
 - 7 PD-LID patient exposed >6 months
- CMC Status
 - 30kg API in stock
 - 90kg drug product available in 50mg and 100mg tablets with placebo
- > IP
 - Patent through 2034 (without extensions)
 - Use patent of mGlu5 NAMs in treatment of brain damage until 2035 option to exclusive license

First-in-class program for post-stroke recovery ready to start Phase 2



mGlu7 NAM for Stress Related Disorders - PTSD

Innovative approach targeting neuronal circuit in stress and fear to deliver an effective and safe treatment for patients with stress-related disorders

Medical Need & Commercial Opportunity in Stress Disorders - PTSD

Urgent medical need for efficacious and safe treatment of PTSD

Selective mGlu7 NAM - Differentiated Approach to Treat Stress Disorders

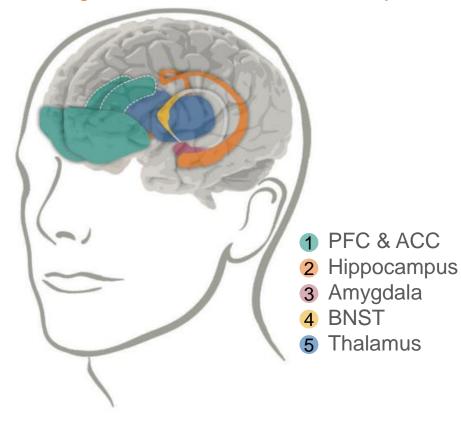
- Current treatments are primarily based on psychotherapy
 - Marginal efficacy and high relapse rate
- Medication is non-specific
 - Usually ineffective
 - Hindered by numerous side effects

¹Fava et al. *Psychother Psychosom* 2015

²Fava et al. Psychother Psychosom 2018

³Barbui et al. CMAJ 2009

- Experimental use of ketamine & MDMA
 - Efficacy unknown
 - Risks of serious side effects


Side-effects	SSRI/ SNRI	Ketamine	MDMA	mGlu7 NAM
Withdrawal syndrome	Yes 1,2	No	Yes ³	No
(Neuro)toxicity	No	Yes 4,5	Yes ⁶	No
Cognitive impairment	No	Yes ⁷	Yes ⁸	No
Suicide ideation / risk	Yes	No	Yes ⁹	No

Selective mGlu7 NAM - potential to deliver better efficacy and tolerability

mGlu7 NAM in Stress Related Disorders

- mGlu7 expressed throughout the stress/fear neural circuit
- mGlu7 KO mice exhibit
 - Reduced conditioned fear and anxiety¹
 - Reduced aggressivity and increased pro-social behaviors²
- mGlu7 NAM treatment results in
 - Reduces expression of fear conditioning in rodents⁴
 - Reduced anxiety and panic-like reactivity³ in rodents
 - Antipsychotic-like efficacy in rodent models of psychosis^{5, 6}

Brain regions involved in fear memory

mGlu7 NAM blocks the reconsolidation of traumatic memory and decreases its expression

TPP and Development Plan

- A first-in-class mGlu7 NAM to treat PTSD
 - Once-a-day oral dosing suitable for chronic treatment
 - Reduction in symptoms and improvement in quality of life (social interaction, anxiety, depression, irritability/aggressivity)
 - Can be combined with psychotherapy
 - Superior tolerability (lack of withdrawal, cognitive impairment, suicide ideation, etc)

Development Plan

Addex mGlu7 NAM Ready to enter IND enabling studies

Addex Financials, Stock and Milestones

Financials and Stock

- Cash at June 30, 2023: CHF 7.2M (USD 8.0M)
- > No debt
- Traded on SIX Swiss Exchange: ADXN (ISIN:CH0029850754)
- ADS representing 6 shares traded on Nasdaq: ADXN (ISIN: US00654J107; CUSIP: 00654J107)

- > 95.30M outstanding shares
 - Armistice Capital LLC 45.11%*/**
 - New Enterprise Associates 7.90%*
- > 139.39M shares incl. treasury shares (232.30M fully diluted)
 - Management & board holds 18.46% (fully diluted basis)
- Analyst coverage:
 - HC Wainwright Raghuram Selvaraju
 - valuationLab Bob Pooler
 - Baader Helvea AG Leonildo Delgado
 - ZKB Laurent Flamme

^{*} Percentage of ownership calculated based on shares and warrants divided by outstanding shares in accordance with SEC rules
** Includes pre-funded warrants and warrants whose exercise is limited to a 9.99% and 4.99% of ownership limitation respectively

Milestones

Milestone	Timing
ADX71149 for epilepsy (Janssen funded) – results expected	Q2 2024
GABAB PAM for chronic cough - start IND enabling studies	H1 2024
M4 PAM for schizophrenia - start IND enabling studies	H2 2024
Dipraglurant for post-stroke recovery – start Phase 2a in stroke patients	2024
GABAB PAM for SUD (Indivior funded) - start IND enabling studies	2024
mGlu7 NAM for stress-related disorders – start IND enabling studies	H1 2024
mGlu2 NAM for cognition - start clinical candidate selection	H2 2024

Achievement of milestones is subject to securing funding or decision of partners

Summary

	Phase 2 epilepsy study (J&J) ongoing
Multiple high value	GABAB PAM for cough and substance use disorder (Indivior)
programs	M4 PAM for schizophrenia and other psychosis
	Dipraglurant - post-stroke recovery phase 2 ready to start
Technology and	Pioneering allosteric modulation drug development
capabilities to	Proprietary screening assays and unique chemical library
deliver	All programs developed in-house, protected with >170 patents
	Partnerships with industry leaders - JnJ & Indivior
Solid foundation	Top tier US investors - Armistice Capital, NEA and NLV
	Dual listed SIX Swiss exchange & US Nasdaq
	Data from Phase 2 epilepsy study - data expected Q2 2024
Dramaining a cuttoole	GABAB PAM and M4 PAM programs - start IND enabling studies in 2024
Promising outlook	Dipraglurant Phase 2 post-stroke recovery study expected to start in 2024
	Solid pipeline delivering value and further partnering potential

ALLOSTERIC MODULATORS FOR HUMAN HEALTH