

Innovative Treatments for Central Nervous System Disorders

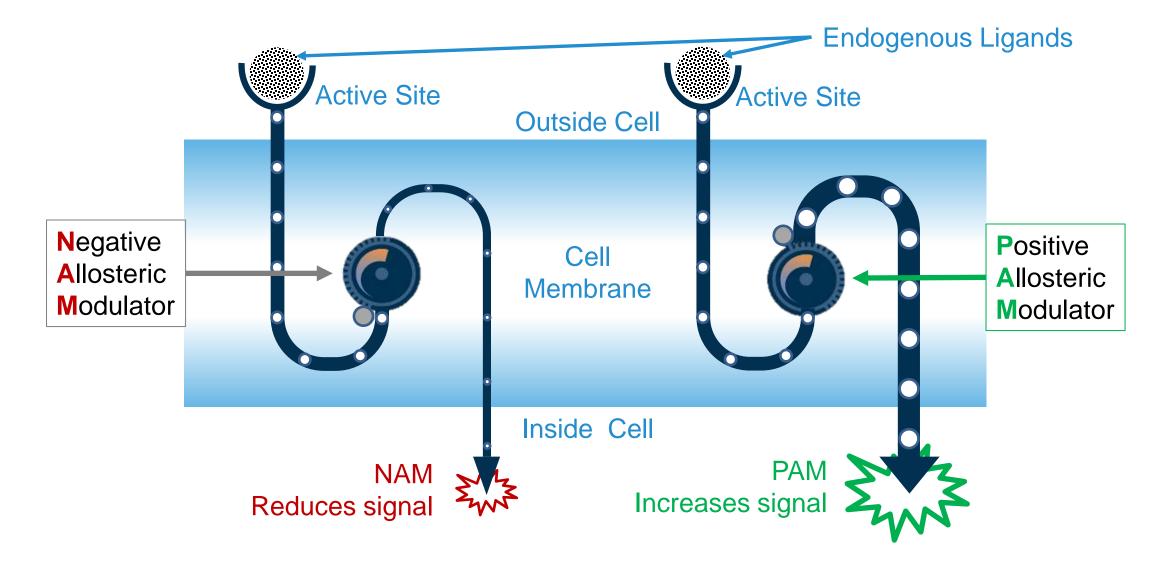
June 2023

Disclaimer

These materials do not constitute or form part, or all, of any offer or invitation to sell or issue, neither in the United States of America nor elsewhere, or any solicitation of any offer to purchase or subscribe for, any securities, nor shall part, or all, of these materials or their distribution form the basis of, or be relied on in connection with, any contract or investment decision in relation to any securities.

These materials contain forward-looking statements based on the currently held beliefs and assumptions of the management of Addex Therapeutics, which are expressed in good faith and, in their opinion, reasonable. Forward-looking statements involve known and unknown risks, uncertainties and other factors, which may cause the actual results, financial condition, performance, or achievements of Addex Therapeutics Ltd, or industry results, to differ materially from the results, financial condition, performance or achievements expressed or implied by such forward-looking statements.

Given these risks, uncertainties and other factors, recipients of this document are cautioned not to place undue reliance on these forward-looking statements. Addex Therapeutics Ltd disclaims any obligation to update these forward-looking statements to reflect future events or developments.



Addex Overview

Multiple high value programs reaching significant milestones	 Phase 2 epilepsy study (J&J) – IRC* recommends continuing study Dipraglurant (mGlu5 NAM) – Phase 2 ready & indication under evaluation GABAB PAM for SUD (Indivior), chronic cough, pain & CMT1A mGlu7 NAM for stress related disorders (PTSD) and schizophrenia M4 PAM for schizophrenia and other psychosis
Leading allosteric modulator technology platform	 Validated & differentiated pharmacological approach Proprietary biological screening assays and chemical library Track record of delivering novel drug candidates
In house discovered pipeline	 Significant intellectual property portfolio Multiple novel drug candidates entering clinical candidate selection Driving long-term growth & future partnership opportunities
Technology validating partnerships with industry	 J&J - €109M in milestones & double-digit royalties Indivior - \$330M in milestones, royalties up to double digit & funded research program
Top tier US investors	 Dual listed on SIX Swiss Exchange & US Nasdaq Capital Market CHF 5.6M (USD6.1 M) cash at March 31, 2023 CHF 4.5M (USD 5.0M) capital raised on April 3, 2023

What are Allosteric Modulators?

Advantages of Allosteric Modulation Versus Orthosteric Drug Discovery

	Conventional small molecules	Biologics / peptides	Nucleic acid- based therapies	Gene therapies	Allosteric modulators
Selectivity	+	++	+++	+++	/
Differentiated pharmacology	-	-	+++	+++	/
Better potential safety/tolerability	++	+	++	-	✓
Non-competitive mechanism	-	_	n/a	n/a	/
Respects physiological rhythm	-	-	-	-	~
Oral bioavailability	+++	-	-	-	/
Crossing BBB	+++	-	-	-	
No immunogenicity	+++	-	+	+	/
Low cost of goods	+++	-	-	-	/

Allosteric modulators

- Address:
 - "Undruggable" targets, such as GPCRs, RTKs, cytokine receptors and enzymes
 - mAb and peptide drug targets with oral small molecules
- Offer exquisite selectivity and superior safety profile
- Are suitable for chronic treatment as potency maintained over prolonged periods
- Require a distinct HTS and characterization approach to discovering small molecule allosteric modulators
- Proven clinical approach (diazepam, cinacalcet, etc)

Addex Pipeline

Molecule / MoA	Indication	Partner	Pre-clinical	Phase 1	Phase 2	Phase 3	Milestone
ADX71149 (mGlu2 PAM)	Epilepsy	Janssen PRIMERIAL COMPANS OF Softmen-Softmen					Update in H2 2023
Dipraglurant (mGlu5 NAM)	PD-LID*, post-stroke recovery, SUD* & pain						Indication under evaluation
	Substance use disorders	NDIVIOR					IND enabling expected 2024
GABA _B PAM	Chronic cough, pain & CMT1A*						IND enabling studies expected 2024
mGlu7 NAM	Stress-related disorders – PTSD*						IND enabling studies expected H2 2023
mGlu2 NAM	Mild neurocognitive disorders & depression						
M4 PAM	Schizophrenia / other psychosis						
mGlu4 PAM	Parkinson's & autoimmune disorders						
mGlu3 PAM	Neurodegenerative disorders						

NAM = Negative PD-Allosteric Modulator SUE

PD-LID = Parkinson's disease levodopa induced dyskinesia

ric Modulator SUD = Substance use disorders

CMT1A = Charcot-Marie-Tooth disease type 1A

PAM = Positive

PTSD = Post-traumatic stress disorder

Allosteric Modulator IRC = Independent interim review committee

Experienced Team

Leadership Team

Tim Dyer CEO / CFO

Co-Founder of Addex Formerly with PwC UK Chartered Accountant Dr Roger Mills Chief Medical Officer

Developed Nuplazid for PD Psychosis >30 years Pharma industry incl. Pfizer, Gilead and Acadia Dr Robert Lutjens Head of Discovery Biology

Member of Addex founding team
Formerly with Glavo & Scrip

Formerly with Glaxo & Scripps Research Institute

Dr Jean-Philippe Rocher Head of Discovery Chemistry

Member of Addex founding team Formerly with Pierre Fabre,

GlaxoSmithKline and Mitsubishi

Dr Mikhail Kalinichev Head of Translational Science

Neuropharmacologist with >20 years pharma industry experience Formerly with Ipsen, Lundbeck and GlaxoSmithKline

Non-executive Directors

Vincent Lawton
Chairman

Former European Head of Merck & Co. Former MHRA Board member

Ray Hill Board member

Former Executive Director Merck & Co.

Jake Nunn Board member

Venture advisor and former Partner at New Enterprise Associates Isaac Manke Board member

General Partner at Acorn Bioventures. Formerly Partner at New Leaf Venture Partners

Scientific Advisory Board

Darryle Schoepp Chairman of SAB

Former leader of Neuroscience research department at Eli Lilly, and at Merck was Neuroscience research therapeutic area leader Mark Bear

Picower Prof. of Neuroscience at MIT

Formerly on faculty of Brown University School of Medicine and an Investigator of the Howard Hughes Medical Institute Peter Bernstein Principal, PhaRmaB LLC

Formerly with ICI Astra Zeneca Awarded numerous accolades including Fellow of the American Chemical Society Benny Bettler

Biomedicine Prof. at Basel University

Formerly at Novartis and discovered allosteric modulators at GABA_B receptor and recipient of the Peter Speiser Award

ADX71149 (JNJ-40411813) for Epilepsy Partnered with Janssen Pharmaceuticals, Inc.

ADX71149 Opportunity in Epilepsy

Large market & unmet medical need	Market projected to reach \$20 billion by 2026* Kennya & Briviagt not calcain 2022 of £1.2 billion treating 2M nationts**
	 Keppra & Briviact net sales in 2022 of €1.2 billion treating 2M patients** High proportion of refractory patients (¼ of new patients***) - combination treatments have limited therapeutic benefit
	 Large underserved patient population in need of improved treatment options
	 Selective oral mGlu2 PAM demonstrated clear MoA in epilepsy
Strong MoA & synergistic	 Showed 35-fold increase in Keppra (SV2A antagonist) efficacy
effect	 Potential to reduce SV2A antagonist dosing – improve efficacy & reduce side effects
	Phase 2 study ongoing
Ctatus of day alama and	 Cohort 1 completed Part 1 & Part 2 ongoing
Status of development	 Cohort 2 Part 1 ongoing
	 2 year open label extension study initiated in Q3 2022
Strategic Partner Janssen Pharmaceuticals, Inc.	 Eligible to receive €109 million in pre-launch milestones and double digit royalties

^{*} Fortune Business Insights April 8, 2020

^{**} UCB FY 2022

^{***} Xue-Ping et al, Medicine July 2019

ADX71149 Preclinical Efficacy in Epilepsy - 6Hz Model

• Preclinical validation in pharmaco-resistant mouse epilepsy model with high translational value:

ED₅₀ shift of Keppra by adding low dose of ADX71149

ED₅₀ shift of ADX71149 by adding ED₅₀ dose of LEV

LEV alone
LEV+10mg ADX71149

**ADX71149 alone
ADX71149 +350mg LEV

**T4 fold

**T4 fold

**T4 fold

**T4 fold

**T4 fold

**T5 fold

**T5 fold

**T5 fold

**T6 fold

**T7 fold

**T7 fold

**T8 fold

**T8 fold

**T8 fold

**T8 fold

**T8 fold

**T9 fold

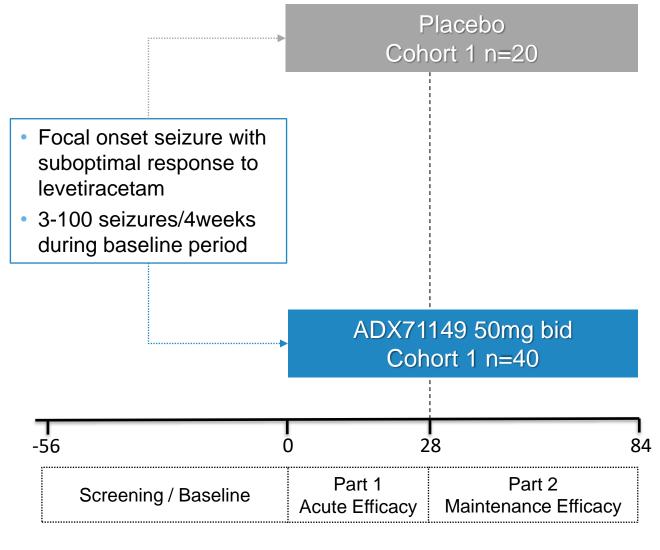
- Keppra efficacy increased 35-fold when administered with a low dose of ADX71149
- Low dose of Keppra leads to 14-fold increase in efficacy of ADX71149

1000

100

LEV (mg/kg)

True synergistic effect


20-

1000

100

ADX71149 dose (mg/kg)

ADX71149 Phase 2a Epilepsy Study

- Double blind placebo controlled
- Establish 28-day seizure count (over 56-day baseline period)
- Primary endpoint: time to monthly baseline seizure count
- Period 1: 4-week acute efficacy phase
- Period 2: 8-week maintenance efficacy phase
 - Subjects who do not reach or exceed their monthly baseline seizure count in Part 1 continue double-blind treatment during Part 2
- Evaluating up to 3 doses in up to 160 patients
- Cohort 1 (60 patients) completed Part 1, Part 2 ongoing
- Cohort 2 (incl. brivaracetam) Part 1 ongoing
- Following review of unblinded data of Cohort 1 Part 1 IRC* recommends to continue the study

IRC* recommends continuing the study – further update on the progress in H2 2023

Dipraglurant (mGlu5 NAM) – Phase 2 Ready

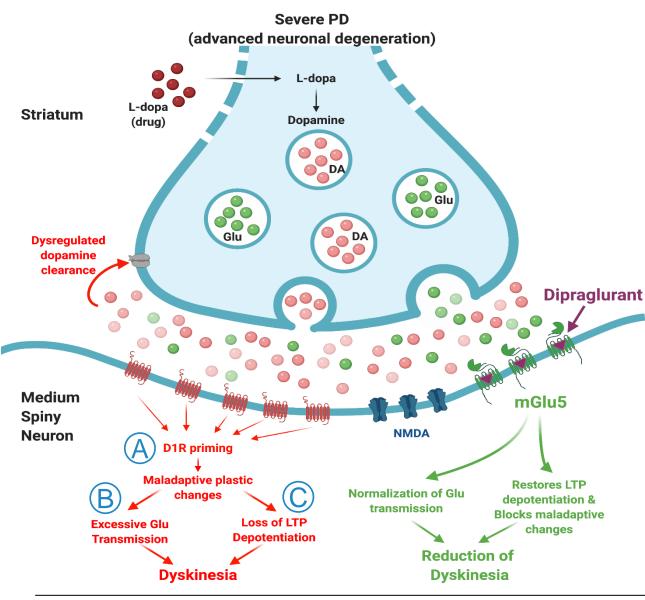
Indications Under Evaluation: PD-LID, SUD, Post-Stroke Recovery, Pain and NDD

Dipraglurant Phase 2 Ready Opportunity in Multiple Indications

Significant target	 PD-LID: 200,000 patients in US, Orphan drug designation granted in US
patient populations	 SUD: 20 million patients in US and 2.2% of adult population worldwide
and commercial	 Pain: up to 10% of adult population are diagnosed with chronic pain every year
opportunities	 Stroke recovery: 5.3 million patients incl. 1 million stroke patients in US
	 Dipraglurant (ADX48621) reduced PD-LID in Phase 2
	 ADX10059 reduced pain in patients with episodic migraine
Clinically validated	 Mavoglurant (AFQ056) effects in PD-LID, CUD, AUD, OCD, GERD
approaches	 Basimglurant (RG-7090; NOE-101) currently in Phase 2 for trigeminal neuralgia
	 MPEP & dipraglurant enhanced functional brain recovery in a rat model of experimental stroke
Status of development Intellectual property	 Extensive preclinical and clinical data – 5 Phase 1 and Phase 2 POC in PD-LID completed
	 Phase 2 ready with >30kg cGMP API and >90kg DP in 100mg & 50mg tablets
	 Composition of matter through June 2025 & strong polymorph patent through 2034 (without extensions)
	 Potential for additional protection - formulation IP & ODD (granted for PD-LID)

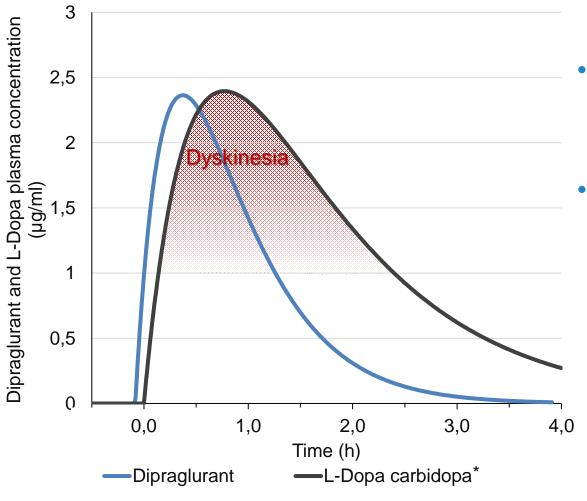
Compelling Rationale to Develop Dipraglurant for PD-LID

- Large underserved patient population in need of improved treatment options
- Significant commercial opportunity with limited competition
 - 1M Parkinson's disease patients in US of which >170,000 have dyskinesia
 - Orphan drug designation granted for dipraglurant in US
 - GOCOVRI® price: \$34K p.a., Nuplazid® price: \$45K p.a.
 - US LID market estimated at \$4B
- Strong mechanistic rationale for blocking mGlu5 to inhibit glutamate signalling
- Supportive pre-clinical data and Phase 2 clinical data
- PK profile ideally suited for treatment of LID
- Dipraglurant is active on same biological pathway as amantadine (inc. GOCOVRI®)
 - Decreases glutamatergic tone
 - Unlike amantadine, dipraglurant:
 - Restores synaptic plasticity to prune aberrant signalling
 - Highly selective with limited off target activity
- Novartis mGlu5 NAM (AFQ056) data supportive of mGlu5 target & rationale for dipraglurant PK profile



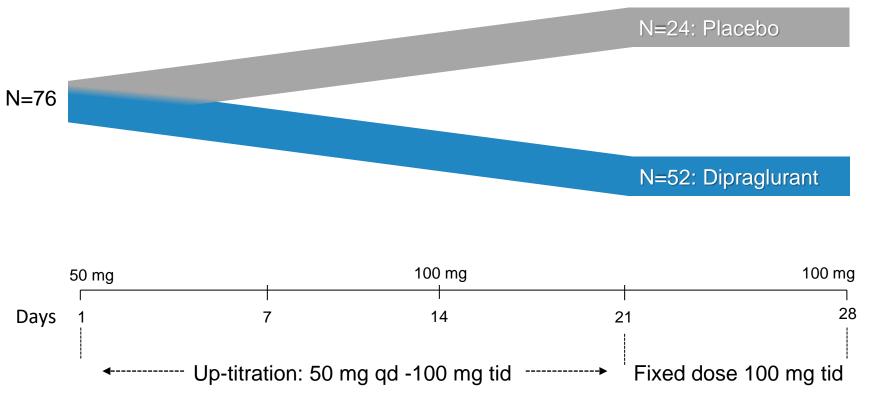
Disability and Impact of PD-LID

Invariably associated with	Dyskinesias caused by neurodegenerationDopamine replacement lowers the triggering threshold for symptoms
long-term L-dopa use	 LID can become as disabling as the PD symptoms themselves
	 Uncontrollable muscle contractions, twisting and writhing
Symptoms include dystonia,	 Painful and severely disabling
chorea, and choreoathetosis	 Causes fatigue/exhaustion and increased risk for falls and injuries
onorda, and onordamictoolo	 Social withdrawal, reduced quality of life and increased burden on caregiver
Drovolonoo rolotod to dioceso	 >40% of patients experience LID within 4-6 years of L-dopa treatment
Prevalence related to disease duration	Increases to 90% after 9 -15 years
duration	 Patients treated with next-generation L-dopa will still experience LID
PD drug efficacy wanes over time - exacerbated by emergence of LID	Treatment becomes a balancing act requiring constant adjustments to ensure symptom control & minimize intolerable side effects


MoA Rationale for Targeting mGlu5 Inhibition in PD-LID

- Loss of substantia nigra neurons combined with the non-physiological, pulsatile stimulation of dopamine receptors with L-dopa are at the basis of LID development
- In the striatum, LID is the result of:
 - A D1 receptor priming
 - B Excess glutamate transmission
 - C Loss of LTP depotentiation
- mGlu5 receptor is an attractive target due to its modulatory action - normalizing glutamatergic activity and restoring LTP depotentiation
- Inhibiting mGlu5 decreases excess glutamatergic tone thereby controlling dyskinesia
- Dipraglurant is an oral, highly selective NAM of the mGlu5 receptor

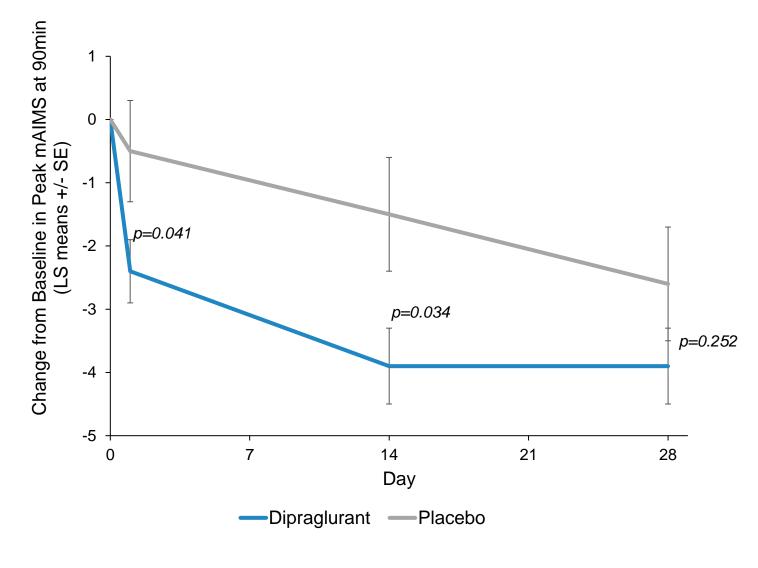
Dipraglurant PK is a Key Advantage for Treating LID


- Dyskinesia symptoms are correlated to peak levels of L-dopa
- PK of dipraglurant allows control of glutamatergic tone ahead of L-dopa Cmax

Dipraglurant normalizes abnormal glutamate stimulation during peak levodopa dose

Dipraglurant peaks ahead of L-dopa for optimal LID control

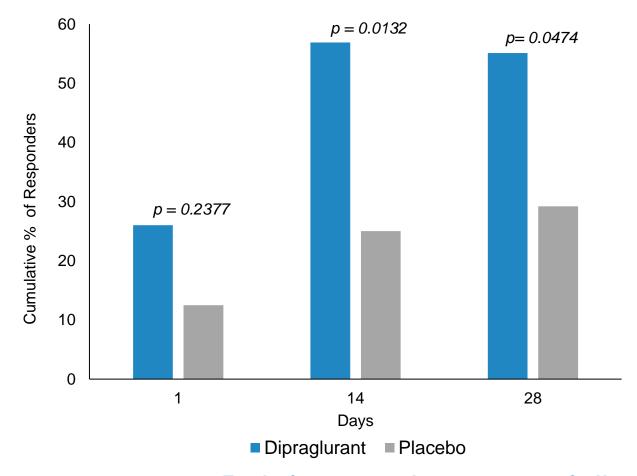
Dipraglurant Phase 2a Study in LID (in US and Europe)



- Primary objective: safety & tolerability
- Secondary objective: exploratory efficacy:
 - Modified Abnormal
 Involuntary Movement Scale
 (mAIMS) on days 1, 14
 and 28
 - Clinician Global Impression of Change (CGIC)
 - Patient diaries of "On" & "Off" time

Measured acute effect of mid-day dose on days 1, 14 and 28

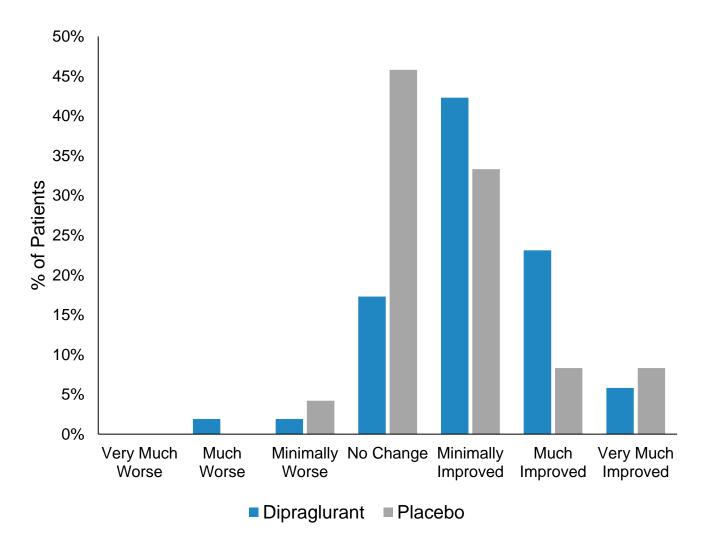
Dipraglurant Improves LID by 30%


- Statistically significant effects:
 Day 1 (50mg) and Day 14 (100mg)
- Improvement maintained through Day 28
- Increasing placebo response caused significance to be lost at Day 28
- No placebo mitigation in study

Mean % change of peak mAIMS from baseline		
Midday dose	Dipraglurant	Placebo
Day 1 (50 mg)	19.9%	4.1%
Day 14 (100 mg)	32.3%	12.6%
Day 28 (100 mg)	31.4%	21.5%

Responder Analysis Demonstrates Dipraglurant Significant Benefit

Percent of patients with ≥ 30% improvement on mAIMS


Responder analysis (≥30% change of mAIMS from baseline)				
Midday dose	Dipra	Dipraglurant Place		acebo
Day 1 (50 mg)	n=13	26.0%	n=3	12.5%
Day 14 (100 mg)	n=29	56.9%*	n=6	25.0%
Day 28 (100 mg)	n=27	55.1%*	n=7	29.2%

*statistically significant

Reinforces robustness of dipraglurant anti-dyskinetic effect

Significant Improvement on CGI-C

	Dipraglurant	Placebo
Improved (p<0.05)	71.2%	49.9%
No change	17.3%	45.8%

- Simple scale reflecting clinical assessment by treating physician
- More objective than mAIMS
- Assessed at end of study compared to baseline
- Supports use of UDysRS in pivotal program

Dipraglurant Demonstrated Good Safety and Tolerability in PD Patients

- Adverse events common in both treatment groups (dipraglurant 88.5%, placebo 75%)
- Most common AEs:

	Dipraglurant	Placebo
Worsening Dyskinesia	21% (15.3% *)	12.5%
Dizziness	19%	12.5%
Nausea	19%	0%
Fatigue	15%	4%

* 3 of 11 AEs of "worsening dyskinesia" occurred in the follow up period (i.e., after drug discontinuation). On treatment incidence = 15.3% dipraglurant, 12.5% placebo

- AEs led to discontinuation in 2 patients (dipraglurant 100 mg)
- Fewer AEs at 50 mg (Weeks 1 and 2) 53% vs 58% placebo compared to 100 mg (Weeks 3 and 4) 73% vs 63% placebo
- No treatment effects on ECG, HR, BP, haematology and biochemistry

Safety profile supports continued development in PD-LID (KOLs and DSMB)

Dipraglurant PD-LID – Status of Development

- Pivotal registration program
 - -Study 301 & 12-month Open Label Study (302) terminated in June 2022 due to slow recruitment rate attributed to COVID related constraints
- Future development under evaluation, including:
 - -PD-LID
 - –Post-stroke recovery
 - Substance use disorder
 - -Pain

Other Preclinical Programs:

GABAB PAM for Substance Use Disorders (Indivior Partnership) & Chronic Cough

mGlu7NAM Stress related disorders & Schizophrenia

GABAB PAM for Substance Use Disorder

Large market & unmet medical need	 High prevalence; 1.8% of US population* Current treatments have undesirable side-effects and prone to relapse Burden to society in US is >\$600B annually**
Clinically validated MoA	 Baclofen (GABAB agonist) used off label for alcohol use disorder ADX71441 attenuates alcohol self-administration and relapse to alcohol seeking in rats*** and alcohol consumption in mice**** ADX71441 reduces cocaine self-administration in NHP*****
Status of program and near-term milestone	 Addex is executing Indivior funded GABAB PAM research program Multiple compounds in late clinical candidate selection phase Differentiated leads and backups with robust novel IP potential IND enabling studies expected to start in 2024
Strategic partnership with Indivior	 Eligible to receive \$330 million in milestones and tiered royalties from high single digits to low double digits Conducting a funded research program to discover novel GABAB PAMs Right to select compounds for development in reserved indications

^{****} Hwa et al 2014 * Merikangas et al. 2010 **** Addex int. report

^{**} NIDA

^{***} Augier et al 2017

GABAB PAM for Chronic Cough

Large market & unmet medical need	 Widespread prevalence Up to 10% of adult population worldwide* More prevalent (10-20%) in Europe, America and Australia than in Asia (5%)* Opioid drugs (codeine) offer suboptimal relief and are linked to undesirable side effects, including abuse potential
Clinically validated MoA	 Baclofen (GABAB agonist) reduced chronic cough in multiple clinical studies Baclofen is used off-label as a treatment of chronic cough Baclofen showed efficacy in animal models of chronic cough**
Status of development	 Multiple compounds in late clinical candidate selection phase Potential for safer and better tolerated therapeutic approach to baclofen
Intellectual property & near-term milestone	 Differentiated leads and backups with good IP potential Independent IP from Indivior collaboration IND enabling studies expected to start in 2024

MGlu7 NAM for Stress Related Disorders (including PTSD) and Schizophrenia

Large market & unmet medical need	 PTSD affects approximately 3.5% of U.S. adults Current treatments are primarily based on psychotherapy, medication is nonspecific (off-label use of anxiolytics and antidepressants) and usually ineffective, often with numerous side effects
Novel first in class MoA	 Potential shown in mGlu7 KO mice phenotype and mGlu7 inhibition studies Preclinical POC demonstrated with Addex mGlu7 NAM: Fear conditioning model of PTSD in rats Elevated plus maze and marble burying test of anxiety in mice Amphetamine-induced hyperactivity test of psychosis in mice
Status of development	 Drug candidate PK/PD established and pre-IND studies completed Potential breakthrough therapeutic innovation for the treatment of stress related disorders like PTSD
Intellectual property & near-term milestone	 Differentiated leads and backups with good IP potential IND enabling studies expected to start in H2 2023

Addex Financials, Stock and Milestones

Financials and Stock

- Cash at March 31, 2023: CHF 5.6M (USD 6.1M)
 - CHF 4.5M (USD 5.0 M) raised on April 3, 2023
- No debt
- Traded on SIX Swiss Exchange: ADXN (ISIN:CH0029850754)
- ADS representing 6 shares traded on Nasdaq: ADXN (ISIN: US00654J107; CUSIP: 00654J107)

- 88.71M outstanding shares
 - Armistice Capital LLC 48.32%*/**
 - New Enterprise Associates 8.47%*
 - New Leaf Venture Partners 2.92%*
- 115.34M registered shares incl. treasury shares (188.31M fully diluted)
 - Management & board holds 18.58% (fully diluted basis)
- Analyst coverage:
 - HC Wainwright Raghuram Selvaraju
 - valuationLab Bob Pooler
 - Baader Helvea AG Leonildo Delgado
 - ZKB Laurent Flamme

^{*} Percentage of ownership calculated based on shares and warrants divided by outstanding shares in accordance with SEC rules

Milestones

Milestone	Timing	
ADX71149 for epilepsy		
Phase 2a – Part 1 IRC* recommends to continue study	10 th May 2023	
Further update on progress	H2 2023	
GABA _B PAM for substance use disorders		
Start IND enabling studies	2024	
GABA _B PAM for chronic cough, pain & CMT1A		
Start IND enabling studies	2024	
mGlu7 NAM for stress-related disorders – PTSD		
Start IND enabling studies	H2 2023	
Partnership for a preclinical program	H2 2023	

Summary

Multiple high value programs	Phase 2 epilepsy study (J&J) ongoing
	 Dipraglurant Phase 2 ready - multiple indications under evaluation
	 GABAB PAM for substance use disorder (Indivior) and other indications
	 mGlu7 NAM for stress related disorders (PTSD) and schizophrenia
	 M4 PAM for schizophrenia and other psychosis
Technology and capabilities to deliver	 Pioneering allosteric modulation drug development
	 Proprietary screening assays and unique chemical library
	 All programs developed in-house, protected with >200 patents
Solid foundation	 Partnerships with industry leaders – JnJ & Indivior
	 Top tier US investors – Armistice Capital, NEA and NLV
	 Dual listed SIX Swiss exchange & US Nasdaq
Promising outlook	 Multiple programs in CCS entering IND enabling studies in 2023/2024
	 Data from Phase 2 epilepsy study – update on progress expected H2 2023

ALLOSTERIC MODULATORS FOR HUMAN HEALTH